МИНОБРНАУКИ РОССИИ ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.04 Физическая и коллоидная химия

программы подготовки специалистов среднего звена 18.02.12 Технология аналитического контроля химических соединений

Форма обучения: очная

Рабочая программа учебной дисциплины $O\Pi.04$ «Физическая и коллоидная химия» разработана в соответствии с требованиями Федерального государственного образовательного стандарта среднего профессионального образования по специальности 18.02.12 «Технология аналитического контроля химических соединений», утвержденного приказом Минобрнауки России от $09.12.2016 \, \mathbb{N}_{2}$ 1554, примерной образовательной программой.

Разработчик(и):

Божок Е.Б., преподаватель ОСПО филиала ФГБОУ ВО «ВГУЭС» в г. Находке

Рассмотрено и одобрено на заседании предметной цикловой комиссии

Протокол № 9 от «19» мая 2023 г.

Председатель ПЦК

В.А. Пушной

Рассмотрено и одобрено на заседании предметной цикловой комиссии

Протокол <u>№</u> от <u>« » 202 г.</u>

Председатель ПЦК

СОДЕРЖАНИЕ

1.	ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ3
2.	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ7
3.	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 14
	4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ
Д	ИСЦИПЛИНЫ17

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ Физическая и коллоидная химия

1.1. Область применения рабочей программы учебной дисциплины

Программа учебной дисциплины «Физическая и коллоидная химия» является частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 18.02.12 Технология аналитического контроля химических соединений.

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы: входит в состав общепрофессионального цикла, имеет связь с дисциплинами общей и неорганической химией, физикой, математикой.

1.3. Цели и планируемые результаты освоения учебной лисциплины:

Цель учебной дисциплины: изучение физико-химических свойств дисперсных систем, физических и химических форм движения материи.

Задачи учебной дисциплины: изучение термодинамических и закономерностей кинетических протекания реакций, механизмов каталитических реакций, свойств химических систем В различных агрегатных состояниях, гомогенных гетерогенных В И системах, особенностей свойств строения коллоидных, микрогетерогенных И грубодисперсных систем, растворов поверхностно-активных И высокомолекулярных веществ.

В результате освоения учебной дисциплины обучающийся должен уметь:

- выполнять расчеты электродных потенциалов, электродвижущей силы гальванических элементов;

- находить в справочной литературе показатели физико-химических свойств веществ и их соединений;
- определять концентрацию реагирующих веществ и скорость реакций;
 - строить фазовые диаграммы;
- производить расчеты параметров газовых смесей, кинетических параметров химических реакций, химического равновесия;
 - рассчитывать тепловые эффекты и скорость химических реакций;
 - определять параметры каталитических реакций;
- В результате освоения учебной дисциплины обучающийся должен знать:
- закономерности протекания химических и физико-химических процессов;
 - законы идеальных газов;
 - механизм действия катализаторов;
 - механизм гомогенных и гетерогенных реакций;
- основы физической и коллоидной химии, химической кинетики, электрохимии, химической термодинамики и термохимии;
 - основные методы идентификации физико-химических процессов;
 - свойства агрегатных состояний веществ;
 - сущность и механизм катализа;
 - схемы реакций замещения и присоединения;
 - условия химического равновесия;
 - физико-химические методы анализа веществ, применяемые приборы;
 - физико-химические свойства сырьевых материалов и продуктов

Освоение учебной дисциплины способствует формированию у обучающегося следующих общих (ОК) и профессиональных (ПК) компетенций:

Код	Наименование результата обучения
OIC 1	Выбирать способы решения задач профессиональной
ОК 1.	деятельности, применительно к различным контекстам
	Осуществлять поиск, анализ и интерпретацию информации,
ОК 2.	необходимой для выполнения задач профессиональной
	деятельности
	Содействовать сохранению окружающей среды,
ОК 7.	ресурсосбережению, эффективно действовать в чрезвычайных
	ситуациях
OIC 0	Использовать информационные технологии в профессиональной
ОК 9.	деятельности.
ПГ 1 1	Оценивать соответствие методики задачам анализа по диапазону
ПК 1.1.	измеряемых значений и точности.
ПК 1.2.	Выбирать оптимальные методы анализа.
ПИ 1 2	Подготавливать реагенты, материалы и реактивы, необходимые
ПК 1.3.	для анализа.
TTIC 1 4	Работать с химическими веществами и оборудованием с
ПК 1.4.	соблюдением отраслевых норм и экологической безопасности
	Обслуживать и эксплуатировать лабораторное оборудование,
ПК 2.1.	испытательное оборудование и средства измерения химико-
	аналитических лабораторий
	Проводить качественный и количественный анализ
ПК 2.2.	неорганических и органических веществ химическими и физико-
	химическими методами
	Планировать и организовывать работу в соответствии со
ПК 3.1.	стандартами предприятия, международными стандартами и
	другими требованиями

1.4. Количество часов, отводимое на освоение программы учебной дисциплины:

максимальная учебная нагрузка по дисциплине 84 часа, в том числе: обязательная аудиторная нагрузка 76 часов; промежуточная аттестация 4 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов		
Максимальная учебная нагрузка (всего)	84		
Обязательная аудиторная учебная нагрузка (всего)	76		
в том числе:			
теоретические занятия (лекции)	32		
лабораторные работы	44		
практические занятия			
контрольные работы (если предусмотрено)	-		
курсовая работа (проект) (если предусмотрено)	20		
Самостоятельная работа обучающегося (всего)	4		
в том числе:			
консультации	-		
самостоятельная работа над курсовой работой (проектом) (если предусмотрено)	-		
Указываются другие виды самостоятельной работы (реферат, доклад, расчетно-графическая работа, творческое задание, домашняя	-		
контрольная работа, написание отчета, внеаудиторная самостоятельная работа и т.п.).			
Промежуточная аттестация по учебной дисциплине в форме зачета, экзамена			

2.2. Тематический план и содержание учебной дисциплины «Физическая и коллоидная химия»

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Коды компетенций, формированию которых способствует элемент программы
Раздел. 1	Химическая термодинамика и кинетика. Методы интенсификации		
	процессов		
Тема 1.1 Общие понятия химической	Содержание теоретического материала 1. Основные понятия химической термодинамики. Классификация термодинамических систем, процессов. Законы идеальных газов. 1, 2, 3	2	
термодинамики	законы термодинамики, их применение. Энтальпия процессов, закон Гесса. Энтропия и направление самопроизвольного протекания реакций.	1	
	 Термодинамические потенциалы. Химический потенциал. Зависимость теплоты реакции от температуры. 	1	
	Практические работы	1	
	 Внутренняя энергия, энтальпия, определение теплового эффекта реакции. Энтропия, определение направления самопроизвольного протекания реакций для изолированных систем. Энергия Гиббса, определение направления протекания реакций в открытых системах. 	1	
	Лабораторная работа 1. Определение теплоты растворения соли	2	
	Самостоятельная работа		OK 01.; OK 02.; OK 07.; OK
	 Проработка конспектов лекций, дополнение материала по разделу «Химическая термодинамика». Работа со справочной литературой. Индивидуальное задание на расчет энтальпии, энтропии, энергии 	4	OK 01., OK 02., OK 07., OK 09.; ПК 1.1.; ПК 1.2.; ПК 1.3.; ПК 1.4.; ПК 2.1; ПК 2.2.; ПК 3.1.

Тема 1.2 Основные	Содержание теоретического материала			
понятия химической	1. Химическая кинетика. Порядок, скорость реакций. Зависимость	2		1.; OK 02.; OK 07.; O
кинетики и катализа.	скорости реакций от концентрации, давления, температуры.			ПК 1.1.; ПК 1.2.; ПК
Химическое	Химическое равновесие. Принцип Ле Шателье. Закон действующих		1.3.;	ПК 1.4.; ПК 2.1; ПК
равновесие	масс. Уравнения изобары, изотермы, изохоры процессов.			2.2.; ПК 3.1.
	2. Катализ, его виды. Классификация каталитических процессов.	1		
	Механизм каталитических реакций. Активированный комплекс.			
	Практические работы			
	1. Определение порядка и скорости реакции. Закон действующих ма	cc.	1	
	2. Расчет энергии активации.		1	
			1	
	Лабораторная работа			
	1. Химическое равновесие			
			2	
	Самостоятельная работа			OK 01.; OK 02.; OK
	Работа в исследовательских группах студентов по темам:			07.; ОК 09.; ПК 1.1.
	1. Скорость гомогенных реакций в аналитическом контроле.		6	ПК 1.2.; ПК 1.3.; П
	2. Скорость гетерогенных реакций в аналитическом контроле.			1.4.; ПК 2.1; ПК 2.2
				ПК 3.1.
Раздел 2.				
	Фазовые равновесия			

	Содержание теоретического материала	1	OK 01.; OK 02.; OK
Тема 2.1	1.Правило фаз Гиббса.2. Однокомпонентные системы. Диаграмма		07.; ОК 09.; ПК 1.1.;
Однокомпонентные	состояния воды, ее характеристика.		ПК 1.2.; ПК 1.3.; ПК
системы	3. Уравнение Клапейрона, его вывод, анализ.		1.4.; ПК 2.1; ПК 2.2.;
			ПК 3.1. ОК 01.; ОК
Тема 2.2			02.; OK 07.; OK 09.;
Многокомпонентные	Содержание теоретического материала	1	ПК 1.1.; ПК 1.2.; ПК
системы	1. Кристаллизация из растворов. Диаграмма состояния в простых	1	1.3.; ПК 1.4.; ПК 2.1;
	системах с эвтектикой.		ПК 2.2.; ПК 3.1. ОК
	2. Диаграммы состояния со сложной эвтектикой. Термический анализ.		01.; OK 02.; OK 07.;
			∩K ∪0 · ∐K 1 1 · ∐K
	Практическая работа	2	
	1.Построение диаграмм состояния одно- и многокомпонентной систем,		
	их анализ.		
	Самостоятельная работа		
	Самостоятельная расота Подготовка презентации по теме «Фазовые равновесия».		
	подготовка презентации по теме «Фазовые равновесия».	4	
	Консультация по разделам 1 и 2	1	
Раздел 3.	Растворы		

Тема 3.1 Разбавленные	Содержание теоретического материала 1. Определение, виды	2	
растворы	растворов. Разбавленные растворы. Законы Рауля.		
	2. Осмос. Уравнение Вант-Гоффа. Давление насыщенного пара в		
	идеальных и реальных системах.		
Тема 3.2 Растворы газов	1		
в жидкостях	Содержание теоретического материала		
	1.Закон Генри. Условия растворимости газов в жидкостях.	1	
Тема 3.3 Взаимная	Содержание теоретического материала		
растворимость	1.Классификация растворимости. Критическая температура растворения.	1	
жидкостей	Кривые расслоения.		
	2. Распределение растворенного вещества между двумя		
	несмешивающимися жидкостями. Закон распределения. Экстракция.		
	Лабораторная работа		
	1. Построение диаграммы кипения бинарных смесей.		
	Практические работы	2	
	1. Законы Рауля. Осмос. Уравнение Вант-Гоффа.	1	
	2. Законы Коновалова.	1	
	3. Экстракций. Определение числа экстракций, необходимых для	1	
	полного выделения компонента.		
	Самостоятельная работа		
	Индивидуальное задание на тему «Построение диаграммы кипения и ее	4	
	анализ».		
Раздел 4. Основы	Содержание теоретического материала	1	
электрохимии	1. Свойства растворов электролитов. Сопротивление, электропроводимость.		
Тема 4.1	2. Прямая кондуктометрия. Кондуктометрическое титрование.		
Кондуктометрия	Содержание теоретического материала		
	1. Электродные процессы, их классификация. Электроды 1 и 2 рода, их	1	OK 01.; OK 02.; OK
Тема 4.2	применение. Электролиз. Законы Фарадея. Гальванические элементы.		07.; ОК 09.; ПК 1.1.;
Электродные процессы.	Вычисление ЭДС гальванических элементов.		ПК 1.2.; ПК 1.3.; ПК
Электролиз.	Содержание теоретического материала		1.4.; ПК 2.1; ПК 2.2.;
Г альванические	1. Влияние свойств растворов электролитов на электродные процессы.	1	
элементы	Уравнение Нернста.		
	2. Прямая потенциометрия. Потенциометрическое титрование.		

Тема 4.3	Лабораторные работы		
Потенциометрия	1. Определение рН гидроксидообразования.	2	
	2. Определение констант диссоциации слабых электролитов методом		
	прямой кондуктометрии. Кондуктометрическое титрование.	2	
	3.Электролиз растворов сильных электролитов.		
	Практические работы		
	1. Законы Фарадея.	2	
	2. Составление схем гальванических элементов. Определение ЭДС.		
	Самостоятельная работа		
	Подготовка теоретического материала по теме: «Методы физической химии в	6	
	химическом анализе соединений (на примере)»		
	Консультация по разделам 3 и4	2	
Раздел 5. Основы	Содержание теоретического материала	1	
коллоидной химии.	1.Определение дисперсных систем, их классификация.		OK 01.; OK 02.; OK
Дисперсные системы	2.Общие свойства дисперсных систем. Методы получения дисперсных		07.; OK 09.; ΠΚ 1.1.;
Тема 5.1	систем.		ПК 1.2.; ПК 1.3.; ПК
Классификация	Содержание теоретического материала		
дисперсных систем	1. Поверхностное натяжение, методы его определения.	1	
T. 72 H	2. Поверхностно-активные вещества, их характеристика.		
Тема 5.2 Поверхностные	3. Адсорбция, ее виды. Адсорбенты, их классификация.	2	
явления. Поверхностное	4. Адсорбция на границе раздела двух фаз (газ-жидкость, жидкость -		
натяжение. Адсорбция	твердое вещество, на границе двух жидкостей). Изотерма адсорбции.		
	Уравнения Фрейндлиха, Ленгмюра.		
	Содержание теоретического материала	1	
	1.Электрические свойства дисперсных систем.	1	
Тема 5.3 Свойства	2.Оптические свойства дисперсных систем. Закон Рэлея. Закон Бугера-		
дисперсных систем	Ламберта-Бера. Светорассеяние.		
_	3.Структурно-механические свойства дисперсных систем. Вязкость.	1	
	Лабораторные работы	2	
	1. Адсорбция уксусной кислоты из водных растворов на гидрофобном		
	адсорбенте. 2. Нефелометрия.	1	
		$\frac{1}{2}$	
	3.Структурно-механические свойства дисперсных систем.		

	Практические работы 1. Расчет поверхностного натяжения. 2. Построение изотермы адсорбции, ее анализ.	1	
	Самостоятельная работа Подготовка теоретического материала по теме: «Дисперсные системы в аналитическом контроле качества (на примере)»	6	
Раздел 6. Коллоидные	Содержание теоретического материала	1	
растворы, их свойства	1.Золи. Мицелла, ее строение.		
Тема 6.1 Золи, их	2.Получение золей. Методы стабилизации золей.		
строение, методы	Содержание теоретического материала	1	
получения	1. Электрические свойства золей. Правило Фаянса-Панета.	1	OK 01.; OK 02.; OK
	2. Коагуляция золей. Правило Шульце-Гарди.		07.; OK 09.; ΠK 1.1.;
Тема 6.2 Свойства	3. Вязкость золей. Оптические свойства золей.		ПК 1.2.; ПК 1.3.; ПК
коллоидных систем	Лабораторная работа	1	1.4.; ПК 2.1; ПК 2.2.;
	1. Методы получения и свойства коллоидных растворов.		ПК 3.1.
	Практические работы	1	11K J.1.
	1. Строение мицеллы.		
	2. Коагуляция золей.		
	Самостоятельная работа		
	Изучение литературы по теме «Свойства коллоидных систем».	6	
	Консультация по разделам 5- 6	3	
Раздел 7.	Содержание теоретического материала		
Микрогетерогенные и	1. Микрогетерогенные системы, их строение, свойства. Методы получения и		
грубодисперсные	разрушения микрогетерогенных систем.		
системы	2.Суспензии, их классификация, строение, свойства, методы получения и		
Тема 7.1	разрушения. Способы стабилизации.	1	
Классификация, методы	3. Эмульсии, их классификация, строение, свойства, методы получения и	1	
получения и	разрушения. Способы стабилизации.		
разрушения	4. Аэрозоли, их классификация, строение, свойства, методы получения и		OK 01.; OK 02.; OK
микрогетерогенных	разрушения. Способы стабилизации.		07.; ОК 09.; ПК 1.1.;
систем. Суспензии,	Содержание теоретического материала		ПК 1.2.; ПК 1.3.; ПК
эмульсии, аэрозоли, их	1. Классификация, методы получения, стабилизация грубодисперсных		1.4.; ПК 2.1; ПК 2.2.;
свойства, способы	систем.	1	ПК 3.1.

стабилизации	2. Пены, их свойства.		
	3. Порошки, их свойства.		
7.2 Классификация,	Практические работы	1	
методы получения	1. Суспензии, методы стабилизации.		
грубодисперсных	2. Эмульсии, методы стабилизации.		
систем. Пены, порошки,	3. Аэрозоли, методы их образования и разрушения.	1	
их свойства, способы	4. Пены, порошки, их свойства.		
стабилизации	Самостоятельная работа		
	Подготовка теоретического материала по теме: «Микрогетерогенные и		
	грубодисперсные системы в аналитическом контроле».	6	
Раздел 8. Свойства	Содержание теоретического материала	1	ОК 01.; ОК 02.; ОК
растворов	1. ВМС, состав, строение.		07.; ОК 09.; ПК 1.1.;
высокомолекулярных	2. Методы получения ВМС.		ПК 1.2.; ПК 1.3.; ПК
соединений (ВМС)			1.4.; ПК 2.1; ПК 2.2.;
Тема 8.1 Общие	Содержание теоретического материала	1	ПК 3.1.
сведения по составу и	1. Свойства растворов ВМС.		
строению ВМС	2. Методы анализа ВМС.		
Тема 8.2 Свойства			
растворов ВМС, методы			
их стабилизации			
	Практические работы		
	1. Строение ВМС.	1	
	2. Методы получения, свойства растворов ВМС.		
	Самостоятельная работа		
	Подготовка теоретического материала по теме: «Свойства растворов ВМС»		
		6	
	Всего: максимальная	84	
	аудиторная	76	

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению:

Реализация учебной дисциплины требует наличия:

1. Лаборатории «Физической и коллоидной химии»: стол письменный (серого цвета) - 7 шт., стул - 14 шт., стол преподавательский - 1 шт., стул мягкий - 1 шт., доска маркерная - 1 шт. Посадочных мест 12

Лабораторное оборудование:

- Спектрофотометр ПЭ-5400ВИ БКРЕ.941412.001-01РЭ с программным обеспечением (ПО) QA5400 версия 2.0
 - Весы ЕК-61011 (переносное оборудование)
 - рН-метр рН-150МИ (переносное оборудование)
- Анализатор жидкости лабораторный АНИОН-4101 (переносное оборудование)
- Анализатор жидкости лабораторный АНИОН-4155. Иономер кондуктометр (*переносное оборудование*)
- Анализатор жидкости лабораторный «АНИОН -7053» + Сенсор ACpO2 943 (переносное оборудование)
- Анализатор жидкости лабораторный «АНИОН -4152» + Сенсор ACpO2 94 (переносное оборудование)
 - Рефрактометр ИРФ-454 Б2М (переносное оборудование)
 - Единица компьютерной техники
 - Весы электронные лабораторные серии HR-120
 - Фотоколориметр КФК-2
- Анализатор жидкости ЭКСПЕРТ 001. Калориметр «Эксперт -001К-2»
 - -Химическая посуда специального назначения, мерная химическая

посуда, химическая посуда общего назначения

- Металлическое оборудование (штативы, держатели, пинцеты, штативы, скальпели, зажимы, подставки и другое)
 - Набор специализированной мебели
- **2.** Кабинета для самостоятельной работы: стол ученический 15 шт., кресло 14 шт., стол преподавательский 1 шт. Техническое оборудование:15 ПК (19" монитор Benq E910, системный блок Intel G6950 2.8 Ghz 1 шт., ОЗУ 2 Гб. 1 шт., HDD 80 Гб 1 шт.)
- **3.** Библиотеки, читального зала: учебная парта 28 шт., стул мягкий 55 шт., стол компьютерный 3 шт., кресло 3 шт., доска передвижная маркерная 1 шт., 3 ПК с выходом в Интернет, настенный экран 490х210, навесной проектор Benq MP723, ноутбук Lenovo S205, акустическая система Sven MS-970 2.1.

3.2. Информационное обеспечение учебной дисциплины

Перечень рекомендуемых учебных изданий, Интернет - ресурсов, дополнительной литературы:

Основная литература:

- 1. Гельфман М. Коллоидная химия: учебник / М.И. Гельфман и др. СПб.: Лань, 2004. 336 с.
- 2. Зимон А.Д. Коллоидная химия : Учебник / А.Д. Зимон.- М.: Агар, 2003. 320 с.

Дополнительная литература:

1. Бароненко В.А. Здоровье и физическая культура студента : учебное пособие для средних специальных учебных заведений / В. А. Бароненко, Л. А. Рапопорт.- М.: Альфа-М:ИНФРА-М, 2012.- 336 с.

2. Белик В.В. Физическая и коллоидная химия : учебник для среднего профессионального образования / В. В. Белик, К. И. Киенская.- М.: Академия, 2005.- 288 с

Электронные информационные ресурсы:

- 1. Коллоидная химия. Примеры и задачи : учебное пособие / В.Ф. Марков и др.— Екатеринбург: Уральский федеральный университет, 2015. http://www.iprbookshop.ru/69612.html
- 2. Нигматуллин Н.Г. Физическая и коллоидная химия: учеб. пособие.-СПб.: Лань, 2015. - https://e.lanbook.com/reader/book/67473/#1
- 3. Физическая и коллоидная химия. Практикум: учеб. пособие / Кругляков П.М. и др. СПб.: Лань, 2013. https://e.lanbook.com/reader/book/5246/#1
- 4. Гамеева О.С. Сборник задач и упражнений по физической и

 коллоидной химии. СПб.: Лань, 2017.

 https://e.lanbook.com/reader/book/92621/#
 1

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины «Физическая и коллоидная химия» осуществляется преподавателем в процессе проведения всех видов текущего контроля успеваемости и промежуточной аттестации.

Текущий контроль успеваемости подразумевает регулярную проверку и контроль освоения студентами программного материала учебных дисциплин, междисциплинарных курсов, профессиональных модулей и может иметь следующие виды: входной, оперативный и рубежный контроль.

Входной контроль обучающихся проводится в начале изучения учебной дисциплины, междисциплинарного курса с целью определения способностей студентов и их готовности к восприятию и освоению учебного материала по изучаемой дисциплине.

Входной контроль по дисциплине «Физическая и коллоидная химия» осуществляется в форме:

- тестирования.

Оперативный контроль проводится с целью объективной оценки качества освоения программы учебной дисциплины «Физическая и коллоидная химия», а также стимулирования учебной работы студентов, мониторинга результатов образовательной деятельности, подготовки к промежуточной аттестации и обеспечения максимальной эффективности учебно-воспитательного процесса.

Оперативный контроль по дисциплине «Физическая и коллоидная химия» проводится преподавателем на любом из видов учебных занятий.

Оперативный контроль по дисциплине «Физическая и коллоидная химия» осуществляется в форме:

- защиты отчетов по практическим и лабораторным работам,

- подготовки и защиты презентаций и сообщений по предложенным темам,
 - устного опроса,
 - проверки конспектов,
 - проверки и оценки индивидуальных заданий.

Рубежный контроль является контрольной точкой по завершению темы или раздела учебной дисциплины или междисциплинарного курса. Рубежный контроль может проводиться в форме тестирования.

Промежуточная аттестация является основной формой контроля учебной работы студентов. Промежуточная аттестация условиях реализации модульно-компетентностного подхода проводится после завершения освоения программ профессиональных модулей и /или учебных дисциплин, a также после изучения междисциплинарных курсов прохождения учебной И производственной практики составе профессионального модуля.

Основной формой промежуточной аттестации по дисциплине «Физическая и коллоидная химия» является:

- зачет,
- экзамен.

Результаты обучения (усвоенные знания, освоенные умения)	Показатели оценки результатов обучения	Критерии оценки результатов обучения		
Усвоенные знания		Текущий контроль		
-закономерности протекания химических и физико-химических процессов;	демонстрирует знания закономерностей протекания химических и физико-химических процессов;	 Та в тест Тест Оперативный контроль: подготовка сообщений презентаций; 		
-законы идеальных газов;	демонстрирует знания законов идеальных газов;	выполнение индивидуальных заданий;		
-механизм действия катализаторов; -механизмы гомогенных и гетерогенных реакций;	демонстрирует знания механизмов действия катализаторов; механизмов гомогенных и гетерогенных реакций;	устный опрос и составление конспектов по защита отчетов по практическим и лабораторным работам.		
-основы физической и коллоидной химии,	демонстрирует знания основ физической и	3) Рубежный контроль - тестовый контроль.		

химической кинетики,	I '1	Промежуточная аттестация:
электрохимии,	химической кинетики,	
химической	электрохимии, химической	- экзамен
термодинамики и	термодинамики и	
термохимии;	термохимии;	
-основные методы	демонстрирует знания	
интенсификации	основных методов	
физико-химических	интенсификации физико-	
процессов;	химических процессов;	
-свойства агрегатных	демонстрирует знания	
состояний веществ;	свойств агрегатных	
	состояний веществ;	
-сущность и механизм	демонстрирует знания	
катализа;	сущностей и механизмов	
,	катализа;	
-схемы реакций	демонстрирует знания схем	
	реакций замещения и	
присоединения;	присоединения;	
•	<u>*</u>	
равновесия;	демонстрирует знания условий химического	
равновесия,	۲	
4	равновесия;	
-физико-химические	демонстрирует знания	
методы анализа	физико-химических	
веществ, применяемые		
приборы;	применяемые приборы;	
-физико-химические	демонстрирует знания	
свойства сырьевых	физико-химических	
материалов и	свойств сырьевых	
продуктов.	материалов и продуктов.	
Освоенные умения		
- выполнять расчеты	правильно выполненные	
электродных	расчеты электродных	
потенциалов,	потенциалов,	
· ·	электродвижущей силы	
гальванических	гальванических элементов	
элементов		
	самостоятельно найденные	
справочной литературе		
	показатели физико-	
химических свойств	химических свойств	
веществ и их	веществ и их соединений	
соединений	вещееть и их соодинении	
-определять	правильно выполненные	
•	-	
концентрацию вешеств	<u> </u>	
r	реагирующих веществ и	
и скорость реакций	скорости реакций	
-строить фазовые	правильно построенная	
диаграммы	фазовая диаграмма	
-производить расчеты	правильно выполненные	
параметров газовых	расчеты параметров газовых	

смесей, кинетических	смесей, кинетических
параметров	параметров химических
химических реакций,	реакций, химического
химического	равновесия
равновесия	
-рассчитывать	правильно выполненные
тепловые эффекты и	расчеты тепловых эффектов
скорость химических	и скорости химических
реакций;	реакций
-определять параметры	правильно определены
каталитических	параметры каталитических
реакций	реакций

МИНОБРНАУКИ РОССИИ ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА

для проведения текущего контроля и промежуточной аттестации по учебной дисциплине

ОП.04 Физическая и коллоидная химия

программы подготовки специалистов среднего звена 18.02.12 Технология аналитического контроля химических соединений

Форма обучения: очная

Контрольно-оценочные средства для проведения текущего контроля и промежуточной аттестации по учебной дисциплине OH.04 «Физическая и коллоидная химия» разработана в соответствии с требованиями Федерального государственного образовательного стандарта среднего профессионального образования по специальности 18.02.12 «Технология аналитического контроля химических соединений», утвержденного приказом Минобрнауки России от $09.12.2016 \, \mathbb{N}_{2}$ 1554, примерной образовательной программой.

Разработчик(и):

Талашкевич Е.А., преподаватель ОСПО филиала ФГБОУ ВО «ВГУЭС» в г. Находке

Рассмотрено и одобрено на заседании предметной цикловой комиссии

Протокол № 9 от «19» мая 2023 г.

Председатель ПЦК

В.А. Пушной

Рассмотрено и одобрено на заседании предметной цикловой комиссии

Протокол <u>№</u> от <u>« » мая 202 г.</u>

Председатель ПЦК

Входной контроль по дисциплине.

Тест № 1

	и солям относится			
1) оксонитра	ат натрия	3) гидроксохло4) перманганат	рид меди (II)	
2) гидрокар	бонат натрия	4) перманганат	калия.	
02. Наиболы 1) СаВг2		й молекулярной м 3) СаЬ		
		ода в кремниевой 3,0; 4) 78,2.	кислоте:	
	+ NaOH =, про	равнении окислит гекающей на холо 4) 5.	ельно-восстановител де, равна:	ьной
05. Объем (л равен:) 2 молекул молен	хулярного азота пр	ои нормальных услов	XRU
	2) 22,4-10 ⁻²³	3) 6,02-10 ²	²³ 4) 1,4-10 ⁻²² .	
Выход (%) п	родукта реакции с		олучено 3 л оксида аз	вота (II)
1)d ¹⁰ ns1 отно	сится к:		ергетического уровня	(n-
		3) s-элемента4) d-элемента		
	гам и группы ой системы Д.И. 1		ам ттруппы	
08 По уимии	еским сройствам	элемент селен - а	папог апемента:	
1) cepa	2) xpom			
-	, .	,	, .	
09. Вещество 1) цинк	о с молекулярной 2) хлорид нат	кристаллической рия 3) йод		
10. К кислот	сам относится:			
1) CH ₃ COOH	2) C();	3) Ca(HCC	(O ₃) ₂ 4) CuOHCl.	
11. Щелочна воде соли:	ая среда образует	ся в результате ги,	дролиза при растворе	энии в
	2) Fe(NO ₃) ₃	3) (NH _j)^	4) K ₂ CO ₃ .	
12. Полност	ью диссоциирует	в водной среде:		

1) KOH	2) NH ₄ OH	3) H ₂ CO ₃	4) Cu(OH)2.							
13. Высшая ст1) сульфиде	гепень окисления с 2) сульфате	еры проявляет 3) сул								
14. Реакция молекулярного хлора с горячим раствором щелочи относится к типу:										
 внутримолекулярного окисления - восстановления межмолекулярного окисления - восстановления диспропорционирования. 										
15. Из раствора сульфата натрия (массовая доля 10 %, масса 150 г.) испарили 10 г. воды. Массовая доля (%) вещества в растворе стала: 1)11,9 2)10,2 3) 10,7 4)12,1.										
16. Реакция синтеза аммиака является1)экзотермической2)эндотермической.										
-	ым растворителем)этанол 3)уксу		4)гексан.							
	рца используется п 2)возгонки									
19. К полимер 1)фенол 2	рам относится)каучук 3)бута	адиен	4)этиленгликоль							
	метрический анали плотности 2)pl		-	ъ.						
		Тест № 2								
01.Общее количество электронов в атоме, внешний электронный уровень которого имеет строение ,3d ⁵ 4s ¹ , равно: 1) 19 2) 35 3) 24 4) 43.										
02.К солям отн 1) сероводород	носится: д 2) серный а	нгидрид	3) щелочь	4) бихромат						
калия.										
03. Масса хлорида калия (г), необходимого для приготовления 500 мл 20%- ного раствора (плотность 1,1 г/мл) равна: 1) 110 2) 55 3) 143 4) 100.										
	лектролитам относ 2) H ₂ CO ₃ 3)		CUSO4.							

17. Кислотным1)гексан 2)толу			4)этанол.	
18. К полярным 1) гексан 2) толус			этилен.	
19. Перекриста1)жидких		то метод очистых 3)тве		
20. Второе нази 1)этанол 2)мура			кислоты	4)формалин.
одинаковым чис	слом:		ой совокупность ато з 3) электронов на в	
02.К кислотам о 1) H ₂ SO ₄ 2		3) Ca(OH) ₂	4) NaCl.	
молекулу:		•	онной форме следуе оты 3) оксида калия	•
04.Macca (г) хло 1) 11,25				
05.В молекуле с1) донорно-акцковалентный2) ионный	-			ный ионный и іярный.
	для пригото	-	вна 14,75 %. Масса раствора с массовы	* *
1) 28,62		3) 24,75	4) 23,46.	
07.Допишите ур в уравнении рав		акции Cu + H ₂ S	$SO_{4fkoK}^{\wedge} = \dots Cymma$	коэффициентов
1) 7 2) 4		4)		5.

1) алюминия, галлия 3) бария, стронция
 меди, цинка натрия, калия
могут быть получены только при нагревании смеси соответствующего пероксида с избытком металла в отсутствие кислорода.
09. Масса (г) N ₂ , занимающего при нормальных условиях объем 44,8 л, равна:
1) 56 2) 38 3) 63 4) 51.
10. В соответствующей окислительно-восстановительной реакции олово вытесняется из раствора собственной соли с помощью металлического: 1) цинка 2) кобальта 3) меди.
11. В природе встречаются только в виде сложных химических соединений: 1) натрий, калий 2) сера, ртуть 3) железо, медь 4) мышьяк, азот.
12. Кислая среда образуется при гидролизе соли: 1) Na ₂ SO ₄ 2) K ₂ SO ₃ 3) СиCO ₃ 4) FeCL
13. Степень окисления хлора в хлорной кислоте $HClO_4$ равна: 1) -1 2) + 7 3) +6 4) -2.
14. В цепочке $FeSO_4$ — \longrightarrow $A \wedge B \wedge Fe_2(SO_4)_3$ веществами A и B являются: 1) $Fe(OH)_2$, FeO 2) FeO , $Fe(OH)_2$ 3) $Fe_2(SO_4)_3$, $Fe(OH)_3$ 4) Fe_2O_3 , $Fe(OH)_3$.
15. Элементы, атомы которых имеют электронную формулу , $(n-1)d^{10}ns^2np^5$, относятся к
1) р-элементам VII группы 3) р-элементам V группы 2) d-элементам VII группы 4) s-элементам II группы.
16. Методом изучения оптических свойств химических систем является 1)кондуктометрия 2)колориметрия 3)рН-метрия 3)хроматография.
17. К высокомолекулярным соединениям, проявляющим амфотерные свойства, относятся 1) аминокислоты 2) амины 3) ДНК 4) белки.
 Абсорбция - это явление прохождения светового потока через слой раствора равномерное распределение вещества по всему объему системы распределение вещества между двумя неподвижными фазами.

- 19. Изоэлектрическая точка дипептида аланил-глицил-аспарагиновая кислота лежит при рН
- 1) меньше 7
- 2) больше 7
- 3) равно 7.

20. Перегонка - это метод очистки

1)жидкостей 2)твердых веществ

3)газов.

Ключи	правильных	ответов
-------	------------	---------

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Тест 1	2	3	2	3	1	3	4	1	3	1	4	1	2	3	3	1	4	1	2	2
Тест 2	3	4	1	2	3	3	2	4	1	1	1	4	2	1	2	1	4	3	3	3
Тест 3	1	1	4	2	3	4	1	4	1	1	1	4	2	3	1	2	4	2	1	1

В тестах представлены разделы: «Основные понятия и законы в химии», «Строение атома», «Периодический закон и периодическая система элементов», «Химическая связь. Гибридизация. Типы кристаллических решеток», «Классификация, номенклатура и свойства неорганических соединений. Способы получения химических соединений», «Химические системы. Определение состава растворов», «Типы и механизмы протекания химических реакций (ионного обмена, гидролиза, окисления-восстановления, электрохимических)», «Основы химической термодинамики, кинетики и катализа», «Номенклатура, строение и свойства органических соединений», «Методы очистки и анализа химических соединений».

Обучающийся должен уметь:

- рассчитывать молекулярную (молярную) массу вещества, количество вещества, моль исходя ИЗ его массы, устанавливать количественный отношения между объемом, количествами моль и молекул газообразных веществ при нормальных условиях по закону Авогадро, определять массовую долю (или массу) составной части молекулы, выход продуктов реакции, концентрацию растворов;
- написать электронную формулу атомов, определить тип элемента (s, p, d, f), проводить аналогию свойств элементов, находящихся в одной группе (периоде) в периодической системе;

- определить тип химической связи, гибридизации атомов и кристаллической решетки вещества, класс, к которому относится конкретное вещество;
- установить факторы, приводящие к изменению скорости химической реакции, смещению химического равновесия, тепловой эффект реакции (экзо- или эндотип), определить влияние катализатора на ход химической реакции;
- определить тип химической реакции, составить уравнения ионнообменных реакций молекулярной И ионно-молекулярной формах, окислительно-восстановительных реакций методом ионно-электронного баланса, простейшие произвести расчеты, ПО ним используя стехиометрические коэффициенты, определить рН среды, которая формируется в результате протекания химической реакции (в т.ч. гидролизе), установить генетические связи между различными классами неорганических и органических веществ, оформить их в виде цепочек химических реакций;
- написать структурные формулы неорганических и органических веществ;
- знать сущность основных методов очистки и химических и физико-химических методов анализа веществ.

Каждый вариант теста содержит 20 заданий, имеющих один правильный вариант ответа. Критерии оценки: каждый правильный ответ - 1 балл.

Критерии оценки (тестирование)

Процент верных ответов	Оценка
менее 61%	неудовлетворительно / не зачтено
61-75%	удовлетворительно / зачтено
76-85%	хорошо / зачтено
86-100%	отлично / зачтено

Примерные темы сообщений и презентаций

- 1. Свойства растворов ВМС
- 2. Микрогетерогенные и грубодисперсные системы в аналитическом контроле
 - 3. Свойства коллоидных систем
- 4. Дисперсные системы в аналитическом контроле качества (на примере)
- 5. Методы физической химии в химическом анализе соединений (на примере)
 - 6. Фазовые равновесия
 - 7. Скорость гомогенных реакций в аналитическом контроле
 - 8. Скорость гетерогенных реакций в аналитическом контроле

Критерии оценки сообщений и презентаций

Оценка «отлично» ставится, если выполнены все требования к подготовке устного сообщения: обозначена проблема и обоснована её актуальность, сделан краткий анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция, сформулированы выводы, даны правильные ответы на дополнительные вопросы.

Оценка «хорошо» ставится, если основные требования подготовке устного сообщения выполнены, но при этом допущены недочёты. В частности, имеются неточности в изложении материала; отсутствует логическая последовательность в суждениях; не выдержан объём сообщения; имеются упущения в оформлении; на дополнительные вопросы даны неполные ответы.

Оценка «удовлетворительно» ставится, если - имеются существенные отступления от требований к подготовке устного сообщения. В частности: тема освещена лишь частично; допущены фактические ошибки

в содержании сообщения или при ответе на дополнительные вопросы; отсутствует вывод.

Оценка «неудовлетворительно» ставится, если тема сообщения не раскрыта, обнаруживается существенное непонимание проблемы или если реферат студентом не представлен.

Критерии оценки ответов при проведении устного опроса (экспресс - опроса)

Оценка «**отлично**»выставляется студенту, сформулировавшему полный и правильный ответ на вопрос(ы) преподавателя, логично структурировавшему и изложившему материал. При этом студент должен показать знание специальной литературы. Для получения отличной оценки необходимо исчерпывающие ответы на уточняющие и дополнительные вопросы.

Оценка «**хорошо**» выставляется студенту, который дал полный правильный ответ на вопрос(ы) преподавателя с соблюдением логики изложения материала, но допустил при ответе отдельные неточности, не имеющие принципиального характера. Оценка «хорошо» может выставлятьсястуденту, недостаточночёткоиполноответившемунауточняющие и дополнительные вопросы.

Оценка **«удовлетворительно»** выставляется студенту, показавшему неполные знания, допустившему ошибки и неточности при ответе на вопрос(ы) преподавателя, продемонстрировавшему неумение логически выстроить материал ответа и сформулировать свою позицию по проблемным вопросам. При этом ошибки недолжны иметь принципиального характера. Студент, ответ которого оценивается **«удовлетворительно»**, должен опираться в своем ответе на учебную литературу.

Оценка «**неудовлетворительно**» выставляется студенту, если он не дал ответа на вопрос(ы) преподавателя; далневерные, содержащие фактические ошибки ответ(ы) на вопрос(ы) преподавателя;

несмогответитьнадополнительные и уточняющие вопросы.

Примерные индивидуальные задания

Задача № 1.

Вычислите изменение энтропии в реакциях:

- a) $H_2O(x) + O_3 = H_2O_2 + O_2$;
- δ) $CH_4 + 3CO_2 = 4CO + 2H_2O$ (Γ);

Задача № 2

Какие из перечисленных оксидов можно восстановить водородом?

- a) MgO;
- б) РьО

Задача № 3

Теплота растворения $CuSO_4$ составляет -66,1 кДж/моль, а теплота перевода $CuSO_4$ в $CuSO_4$ -5 H_2O равна -78,8 кДж/моль. Вычислите теплоту растворения $CuSO_4$ -5 H_2O .

Задача № 4

Сколько граммов сахара содержится в 250 мл раствора, осмотическое давление которого при 7°С составляет 283,6 кПа? Вычислите молярность раствора. В каком количестве мл раствора содержится 1 моль сахара?

Задача № 5

Во сколько раз увеличится константа скорости химической реакции при повышении температуры на 40° , если у = 3,2?

Задача № 6

Вычислите э.д.с. гальванических элементов, если образующие их электроды опущены в растворы солей с одинаковой активностью катиона:

a) -Mn / MnSO₄ || N1SO₄ / Ni+;

б) -Fe / FeSO4 || CUSO4 / Cu+;

Задача № 7

Вычислите потенциалы металлов, находящихся в контакте с растворами их солей с заданной активностью катиона:

a) Fe / FeSO₄, [Fe²⁺] = 0,01; б) Cr / Cr₂(SO₄)₃, [Cr³⁺] =
$$5 \cdot 10^{-3}$$
.

Задача № 8

При какой активности ионов Ag⁺ потенциал серебряного электрода составит 95% от величины его стандартного электродного потенциала?

Задача № 9

Золь фосфата серебра получен при добавлении 3 см3 водного раствора азотнокислого серебра концентрацией 0,06 моль/дм3 к 10 см3 раствора фосфата нитрия натрия концентрацией 0,03 моль/дм3. Привести формулу мицеллы золя. Как заряжена частица золя? Каким образом определить ее заряд?

Задача № 10

Золь сульфида серебра получен при добавлении 8 см3 водного раствора азотнокислого серебра концентрацией 0,06 моль/дм3 к 10 см3 раствора сульфида калия концентрацией 0,05 моль/дм3. Привести формулу мицеллы золя. Как заряжена частица золя? Каким образом определить ее заряд?

Задача № 11

Привести формулу мицеллы золя, полученного при сливании водного раствора азотнокислого висмута и небольшого избытка вещества сульфида натрия.

Ответить на вопросы

Какие ионы являются потенциал определяющие?

Назовите противоионы адсорбционного и диффузионного слоя?

Напишите диссоциацию мицеллы. Определите заряд коллоидной частицы

Задача № 12

Привести формулу мицеллы золя, полученного при сливании водного раствора сульфида калия и небольшого избытка вещества азотнокислой ртути.

Ответить на вопросы

Какие ионы являются потенциал определяющие?

Назовите противоионы адсорбционного и диффузионного слоя?

Напишите диссоциацию мицеллы. Определите заряд коллоидной частицы.

Задача № 13

Привести формулу мицеллы золя, полученного при сливании водного раствора ферро(11) цианида калия и небольшого избытка вещества хлорного железа.

Ответить на вопросы

Какие ионы являются потенциал определяющие?

Назовите противоионы адсорбционного и диффузионного слоя?

Напишите диссоциацию мицеллы. Определите заряд коллоидной частицы.

Задача № 14

Вычислите изменение энтропии в реакциях:

- a) $H_2O(x) + O_3 = H_2O_2 + O_2$;
- δ) $CH_4 + 3CO_2 = 4CO + 2H_2O$ (Γ);

Задача № 15

Какие из перечисленных оксидов можно восстановить водородом?

- a) MgO;
- б) РьО

Задача № 16

Теплота растворения $CuSO_4$ составляет -66,1 кДж/моль, а теплота перевода $CuSO_4$ в $CuSO_4$ -5 H_2O

равна -78,8 кДж/моль. Вычислите теплоту растворения CuSO₄-5H₂O.

Задача № 17

Сколько граммов сахара содержится в 250 мл раствора, осмотическое давление которого при 7°С составляет 283,6 кПа? Вычислите нормальность раствора. В каком количестве мл раствора содержится 1 моль сахара?

Задача № 18

Во сколько раз увеличится константа скорости химической реакции при повышении температуры на 50° , если у = 3.2?

Задача № 19

Вычислите э.д.с. гальванических элементов, если образующие их электроды опущены в растворы солей с одинаковой активностью катиона:

- a) $-Mn / MnSO_4 \parallel N1SO_4 / Ni+$;
- б) -Fe / FeSO₄ || CuSO₄ / Cu+;

Задача № 20

Вычислите потенциалы металлов, находящихся в контакте с растворами их солей с заданной активностью катиона:

a) Fe / FeSO₄,
$$[Fe^{2+}] = 0.02$$
; 6) Cr / C^SO^, $[Cr^{3+}] = 5 \cdot 10^{-3}$.

Задача № 21

При какой активности ионов Ag⁺ потенциал серебряного электрода составит 85% от величины его стандартного электродного потенциала?

Задача № 22

Золь фосфата серебра получен при добавлении 3 см3 водного раствора азотнокислого серебра концентрацией 0,05 моль/дм3 к 10 см3 раствора фосфата нитрия натрия концентрацией 0,03 моль/дм3.Привести формулу мицеллы золя. Как заряжена частица золя? Каким образом определить ее заряд?

Критерии оценки выполнения индивидуального задания

Оценка «**отлично**» - работа выполнена в полном объеме и без замечаний.

Оценка «**хорошо**» - работа выполнена правильно с учетом 2-3 несущественных ошибок исправленных самостоятельно по требованию преподавателя.

Оценка «**удовлетворительно**» - работа выполнена правильно не менее чем наполовину или допущено 1-2 существенных ошибки.

Оценка «**неудовлетворительно**» - допущены три (и более) существенные ошибки в ходе работы, которые студент не может исправить даже по требованию преподавателя или работа не выполнена.

Во всех случаях оценка снижается, если студент не соблюдает Требования к оформлению письменных работ, выполняемых студентами и слушателями филиала ДВФУ в г. Находке (Протокол заседания Совета филиала №26 от 30.09.2014).

Методические рекомендации для подготовки отчета по практической и лабораторной работе

Практические занятия служат связующим звеном между теорией и практикой. Они необходимы для закрепления теоретических знаний, полученных на лекционных занятиях, а также для получения практических знаний.

Выполнение практических работ студентами влияет на формирование и развитие информационных компетенций. Студенты овладевают способами работы с информацией:

- поиск в каталогах, поисковых системах, иерархических структурах;
- извлечение информации с различных носителей;
- систематизация, анализ и отбор информации (разные виды сортировки, фильтры, запросы, структурирование файловой системы, проектирование баз данных и т.д.);
- технические навыки сохранения, удаления, копирования информации и т.п.
- преобразование информации (из графической-в текстовую, из аналоговой в цифровую и т.п.)

Практические задания выполняются студентом самостоятельно, с применением знаний и умений, полученных на уроках, а так же с использованием необходимых пояснений, полученных от преподавателя при выполнении практического задания.

К практическому занятию от студента требуется предварительная подготовка, которую он должен провести перед занятием самостоятельно:

- повторение материала лекции по теме практического занятия;
- решение задач;

Практическая работа выполняется каждым студентом самостоятельно. Студенты, пропустившие занятия, выполняют практические работы во внеурочное время.

После выполнения каждой практической работы студент демонстрирует результат выполнения преподавателю, отвечает на вопросы.

Критерии оценки лабораторных и практических работ

Оценка «**отлично**» (5 баллов) -работа выполнена в полном объеме и без замечаний.

Оценка «**хорошо**» (4 балла) -работа выполнена правильно с учетом 2-3 несущественных ошибок исправленных самостоятельно по требованию преподавателя.

Оценка **«удовлетворительно»** (3 балла) - работа выполнена правильно не менее чем на половину или допущено 1-2 существенных ошибки.

Оценка «**неудовлетворительно**» (2 балла) - допущены три (и более) существенные ошибки в ходе работы, которые студент не может исправить даже по требованию преподавателя или работа не выполнена.

Во всех случаях оценка снижается, если студент не соблюдает Требования к оформлению письменных работ, выполняемых студентами и слушателями филиала ДВФУ в г.Находке (Протокол заседания Совета филиала №26 от 30.09.2014).

Рубежный контроль. Рубежный контроль 4 семестр

Вариант 1

- 1. Перечислите термодинамические параметры систем, дайте им краткую характеристику. Сформулируйте закон Гесса.
- 2. Дайте краткую характеристику диаграммы состояния воды, определите число степеней свободы в каждом поле диаграммы, на кривых, в тройной точке.

Вариант 2

- 1. Дайте определение порядка и скорости химических реакций. Расчет скорости для реакций 1 и 2 порядка.
- 2. Кристаллизация из растворов. Приведите вид и дайте краткую характеристику диаграммы плавкости и кривых охлаждения.

Вариант 3

- 1. Разбавленные растворы. Сформулируйте законы Рауля.
- 2. Гальванические элементы. Составьте схему гальванического элемента на основе Fe-Al, приведите уравнения реакций, протекающих на электродах, рассчитайте ЭДС при концентрации ионов в растворе 0,1 моль/л при T=298 К.

Вариант 4

- 1. Законы Коновалова, дайте определение.
- 2. Электролиз. Сформулируйте законы электролиза.

Вариант 5

1. Электрохимические методы анализа, их краткая характеристика. Анализ уравнения Нернста.

2. Рассчитайте изменение энергии Гиббса в реакции горения метана при нормальных условиях и сделайте вывод о направлении протекания реакции.

5 семестр

Вариант 1

- 1. Приведите классификацию дисперсных систем.
- 2. Вязкость дисперсных систем, методы расчета.

Вариант 2

- 1. Адсорбция, ее виды. Уравнения Фрейндлиха, Ленгмюра.
- 2. Оптические свойства дисперсных систем. Уравнения Релея, Бугера Ламберта - Бера.

Вариант 3

- 1. Поверхностное натяжение растворов, методы расчета.
- 2. Электрические свойства дисперсных систем.

Вариант 4

- 1. Адсорбция из растворов. Виды адсорбентов.
- 2. Напишите формулу мицеллы золя хлорида серебра, полученного в избытке разбавленного раствора хлорида калия. Какие электролиты могут использоваться для коагуляции такого золя?

Вариант 5

- 1. Поверхностная активность веществ. Классификация веществ по поверхностной активности. Строение ПАВ.
- 2. Изотерма адсорбции, ее краткая характеристика.

Критерии оценки

При ответе на вопросы рубежного контроля обучающийся должен ориентироваться на программу курса, лекционный и практический материал. В каждом ответе должны быть даны определения систем (явлений и т.д.), классификации, основные законы, описывающие ЭТИ явления, математическое выражение с расшифровкой величин, входящих в него. При классификации необходимо использовании перечислить ВИДЫ систем (явлений, свойств) и дать им краткую характеристику. В случае описания химических реакций необходимо привести уравнения. В задачах решение расписывается подробно, приводятся расчетные формулы и их расшифровка. Максимальное количество баллов за каждый вариант составляет 5 баллов.

Промежуточная аттестация (зачет)

- 1. Основные понятия термодинамики: термодинамическая система, компонент, фаза, состояние термодинамической системы, термодинамический процесс.
 - 2. Внутренняя энергия. Энтальпия. 1 начало термодинамики.
- 3. Закон Гесса. Теплота образования и теплота сгорания химических соединений. Теплота растворения.
 - 4. Теплоемкость. Закон Кирхгоффа.
 - 5. Самопроизвольное протекание процесса.
 - 6. Энтропия системы.
 - 7. Энтропия и термодинамическая вероятность системы.
 - 8. Энергия Гельмгольца. Энергия Гиббса. Химический потенциал.
 - 9. Закон действующих масс. Смещение равновесия.
- 10. Зависимость константы равновесия от температуры. Уравнения изотермы, изобары и изохоры Вант-Гоффа.
- 11. Химическое равновесие в гетерогенной системе. Фазовое равновесие. Правило фаз Гиббса.
- 12. Диаграмма состояния однокомпонентной системы. Уравнение Клаузиуса-Клапейрона.

- 13. Диаграмма состояния двухкомпонентной системы ее характеристика.
 - 14. Диффузия и осмос в растворах. Закон Вант-Гоффа.
- 15. Давление насыщенного пара растворителя над раствором, первый закон Рауля. Температура кипения и замерзания растворов. Второй закон Рауля. Применение методов криоскопии и эбуллиоскопии.
- Растворы двойные системы, в которых оба компонента летучие.
 Законы Коновалова. Диаграммы кипения.
- 17. Распределение третьего компонента в системе двух несмешивающихся жидкостей. Закон распределения.
- 18. Электропроводность растворов электролитов. Удельная и эквивалентная электропроводность.
- 19. Электродные процессы. Возникновение потенциала на границе металл-раствор. Электродные потенциалы. Электроды I и П рода.
- 20. Электроды сравнения (водородный и хлорсеребряный). Индикаторные электроды (на примере стеклянного электрода).

Промежуточная аттестация (экзамен)

- 21. Химическая термодинамика. Основные понятия термодинамики: термодинамическая система, компонент, фаза, состояние термодинамической системы, термодинамический процесс.
 - 22. Первый закон термодинамики. Внутренняя энергия. Энтальпия.
- 23. Тепловой эффект химической реакции. Закон Гесса. Теплота образования и теплота сгорания химических соединений. Теплота растворения.
- 24. Зависимость теплового эффекта от температуры. Теплоемкость.Закон Кирхгоффа.
- 25. Второй закон термодинамики. Самопроизвольное протекание процесса.

- 26. Энтропия системы. Энтропия и термодинамическая вероятность системы.
 - 27. Термодинамические потенциалы. Химический потенциал.
 - 28. Химическое равновесие. Закон действия. Смещение равновесия.
- 29. Зависимость константы равновесия от температуры. Уравнения изотермы, изобары и изохоры Вант-Гоффа.
- 30. Химическое равновесие в гетерогенной системе. Фазовое равновесие. Правило фаз Гиббса.
- 31. Диаграмма состояния однокомпонентной системы. Уравнение Клаузиуса-Клапейрона.
- 32. Диаграмма состояния двухкомпонентной системы и ее характеристика.
 - 33. Диффузия и осмос в растворах. Закон Вант-Гоффа.
- 34. Давление насыщенного пара растворителя над раствором, первый закон Рауля. Температура кипения и замерзания растворов. Второй закон Рауля. Применение методов криоскопии и эбуллиоскопии.
- 35. Растворы двойные системы, в которых оба компонента летучие. Законы Коновалова. Диаграммы кипения.
- 36. Распределение третьего компонента в системе двух несмешивающихся жидкостей. Закон распределения.
- 37. Электропроводность растворов электролитов. Удельная и эквивалентная электропроводность.
- 38. Электродные процессы. Возникновение потенциала на границе металл-раствор. Электродные потенциалы. Электроды I и П рода.
- 39. Электроды сравнения (водородный и хлорсеребряный). Индикаторные электроды (на примере стеклянного электрода).
- 40. Дисперсные системы, их классификация. Характеристика дисперсных систем.
- 41. Методы получения дисперсных систем (пептизация, физическая и химическая конденсация).

- 42. Методы очистки и концентрирования дисперсных систем.
- 43. Удельная свободная поверхностная энергия и поверхностное натяжение. Поверхностные явления и их классификация.
- 44. Основные закономерности адсорбции. Физическая и химическая адсорбция. Изотерма адсорбции. Уравнение Фрейндлиха.
- 45. Основные теории мономолекулярной адсорбции. Уравнение Ленгмюра.
- 46. Изотерма адсорбции Ленгмюра, ее анализ. Графический метод нахождения констант в уравнениях Фрейндлиха и Ленгмюра.
 - 47. Теория полимолекулярной адсорбции. Теория БЭТ.
- 48. Адсорбция на границе жидкость газ. Поверхностное натяжение. Методы определения поверхностного натяжения.
- 49. Влияние растворенных веществ на поверхностное натяжение. Уравнение Гиббса. Правило Дюкло - Траубе. Уравнение Шишковского.
- 50. Адсорбция на границе жидкость (раствор) твердое тело. Молекулярная адсорбция из раствора. Правило Ребиндера.
 - 51. Лиотропные ряды. Правило Фаянса-Панета.
- 52. Ионно-обменная адсорбция, ее характеристика. Использование ионно-обменных смол для очистки воды.
 - 53. Адгезия и смачивание. Когезия.
- 54. Электрические свойства дисперсных систем. Двойной электрический слой, его строение. Теории строения ДЭС.
- 55. Строение мицеллы золя (на примере фосфата кальция). Дзета-потенциал. Факторы, влияющие на дзета-потенциал.
- 56. Электрокинетические явления (электроосмос, электрофорез, эффекты Дорна, Квинке).
 - 57. Виды устойчивости коллоидов. Коагуляция. Факторы коагуляции.
 - 58. Электролитная коагуляция. Правила коагуляции. Флокуляция.
 - 59. Методы стабилизации коллоидных систем.

- 60. Оптические свойства коллоидных систем. Основные законы оптики. Эффект Тиндаля.
- 61. Устройства и принцип работы приборов, используемых для исследования оптических свойств коллоидов.
- 62. Структурно-механические свойства дисперсных систем. Вязкость дисперсных систем. Ньютоновские и неньютоновские жидкости, их характеристика. Реологические кривые.
- 63. Структурирование и гелеобразование в дисперсных системах. Тиксотропия. Синерезис.
- 64. Характеристика суспензий. Методы получения. Устойчивость суспензий. Применение.
- 65. Эмульсии. Типы эмульсий, их устойчивость. Эмульгаторы. Получение и разрушение эмульсий. Обращение эмульсий. Применение.
- 66. Пены. Кратность, устойчивость пен. Пенообразователи и пеногасители. Применение.
- 67. Аэрозоли, их характеристика. Методы стабилизации и разрушения аэрозолей. Аэрозоли в производственной среде.
 - 68. Порошки. Псевдотранспорт и псевдоожижение, гранулирование.
- 69. Дисперсные системы с твердой дисперсной средой. Твердые золи, твердые пены, капиллярно-пористые тела.
- 70. Коллоидные ПАВ. Классификация ПАВ. Критическая концентрация мицеллообразовани. Солюбилизация. Моющие действияПАВ.
- 71. Высокомолекулярные соединения. Природные и синтетическиеВМС, их строение. Конформации полимеров.
- 72. Общая характеристика свойстврастворов ВМС: осмотическое давление, вязкость, высаливание, коацервация.
 - 73. Набухание, степень набухания, стадии набухания.
 - 74. Студни. Свойства студней.
- 75. Белки как коллоидные растворы. Изоэлектрическая точка аминокислот и белков. Влияние рН на ИЭТ.

Критерии выставления оценки студенту на зачете/ экзамене,

оперативного, рубежного контроля

Оценка зачета/ экзамена Требования к сформированным компетенциям	
Оценка зачета/ экзамена	треоования к сформированным компетенциям
(стандартная)	Overview (Committee) Principal Region of Committee Committee
«зачтено» «отлично»	Оценка «отлично» выставляется студенту, если он
	глубоко и прочно усвоил программный материал,
	исчерпывающе, последовательно, четко и логически
	стройно его излагает, умеет тесно увязывать теорию
	с практикой, свободно справляется с задачами,
	вопросами и другими видами применения знаний,
	причем не затрудняется с ответом при
	видоизменении заданий, использует в ответе
	материал монографической литературы, правильно
	обосновывает принятое решение, владеет
	разносторонними навыками и приемами выполнения
	практических задач.
«зачтено» «хорошо»	Оценка «хорошо» выставляется студенту, если он
	твердо знает материал, грамотно и по существу
	излагает его, не допуская существенных
	неточностей
	в ответе на вопрос, правильно применяет
	теоретические положения при решении
	практических вопросов и задач, владеет
	необходимыми навыками и приемами их
«зачтено»/ «удовлетворительно»	Оценка «удовлетворительно» выставляется
	студенту, если он имеет знания только основного
	материала, но не усвоил его деталей, допускает
	неточности, недостаточно правильные
	формулировки, нарушения логической
	последовательности в изложении программного
	материала, испытывает затруднения при
	выполнении
«не зачтено»/ «неудовлетворительно»	Оценка «неудовлетворительно» выставляется
	студенту, который не знает значительной части
	программного материала, допускает существенные
	ошибки, неуверенно, с большими затруднениями
	выполняет практические работы. Как правило,
	оценка«неудовлетворительно» ставится студентам,
	которые не могут продолжить обучение без
	дополнительных занятий по соответствующей
	дисциплине.